The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways.
نویسندگان
چکیده
Emerging evidence suggests that the molecular mechanisms driving the responses of plants to environmental stresses are associated with specific chromatin modifications. Here, we demonstrate that the Arabidopsis trithorax-like factor ATX1, which trimethylates histone H3 at lysine 4 (H3K4me3), is involved in dehydration stress signaling in both abscisic acid (ABA)-dependent and ABA-independent pathways. The loss of function of ATX1 results in decreased germination rates, larger stomatal apertures, more rapid transpiration and decreased tolerance to dehydration stress in atx1 plants. This deficiency is caused in part by reduced ABA biosynthesis in atx1 plants resulting from decreased transcript levels from NCED3, which encodes a key enzyme controlling ABA production. Dehydration stress increased ATX1 binding to NCED3, and ATX1 was required for the increased levels of NCED3 transcripts and nucleosomal H3K4me3 that occurred during dehydration stress. Mechanistically, ATX1 affected the quantity of RNA polymerase II bound to NCED3. By upregulating NCED3 transcription and ABA production, ATX1 influenced ABA-regulated pathways and genes. ATX1 also affected the expression of ABA-independent genes, implicating ATX1 in diverse dehydration stress-response mechanisms in Arabidopsis.
منابع مشابه
Phosphatidylinositol 5-Phosphate Links Dehydration Stress to the Activity of ARABIDOPSIS TRITHORAX-LIKE Factor ATX1
BACKGROUND Changes in gene expression enable organisms to respond to environmental stress. Levels of cellular lipid second messengers, such as the phosphoinositide PtdIns5P, change in response to a variety of stresses and can modulate the localization, conformation and activity of a number of intracellular proteins. The plant trithorax factor (ATX1) tri-methylates the lysine 4 residue of histon...
متن کاملArabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses
Plants are frequently exposed to numerous environmental stresses such as dehydration and high salinity, and have developed elaborate mechanisms to counteract the deleterious effects of stress. The phytohormone abscisic acid (ABA) plays a critical role as an integrator of plant responses to water-limited condition to activate ABA signal transduction pathway. Although perception of ABA has been s...
متن کاملA vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis.
The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA...
متن کاملThe Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis
Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 actio...
متن کاملAbscisic acid induces the alcohol dehydrogenase gene in Arabidopsis.
Exogenous abscisic acid (ABA) induced the alcohol dehydrogenase gene (Adh) in Arabidopsis roots. Both the G-box-1 element and the GT/GC motifs (anaerobic response element) were required for Adh inducibility. Measurement of endogenous ABA levels during stress treatment showed that ABA levels increased during dehydration treatment but not following exposure to either hypoxia or low temperature. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 66 5 شماره
صفحات -
تاریخ انتشار 2011